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Abstract The stability and bifurcation of delayed
feedback spin stabilization of a rigid spacecraft is in-
vestigated in this paper. The spin is stabilized about the
principal axis of the intermediate moment of inertia
using a simple delayed feedback control law. In par-
ticular, linear stability is analyzed via the exponential-
polynomial characteristic equations and then the meth-
od of multiple scales is used to obtain the normal form
of the Hopf bifurcation. Bifurcation diagrams and the
dynamics of the delayed closed-loop system are ver-
ified using continuation software and with numerical
simulations.

Keywords Time delay · Spacecraft · Delayed
feedback control · Spin stabilization · Stability
analysis · Bifurcation · Multiple scales · Normal form

1 Introduction

The subject of spin stabilization of spacecraft is of
great significance in spacecraft design and attitude
control. While the spin motion of rigid spacecraft is
stable about the principal axes of minor and major in-
ertia in the absence of external moments and internal
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energy dissipation, the natural instability of the prin-
cipal axis of intermediate inertia justifies the necessity
for using a controller in order to stabilize intermedi-
ate axis spin. On the other hand, due to time delay
in the sensors (e.g. rate gyros) or actuators (e.g. reac-
tion control thrusters, control moment gyros, or reac-
tion wheels), the current states are unlikely to be avail-
able for state feedback. Therefore, a delayed feedback
control law is investigated in this work to simulate the
more realistic situation of delayed spin stabilization.

There have been a few studies on the application
of time delay in the feedback control of a rigid body
for stability enhancement purposes. In [1, 2] discrete
and distributed time delay were included, respectively,
into Euler’s equations of motion, where the equations
of motion were obtained based on the Hamiltonian
function. The method of multiple scales was employed
in [3–5] to study the attitude dynamics of a space-
craft in the orbital plane, where a closed-loop control
law was designed for the spacecraft using a magnetic
control torque compared to which the gravity gradi-
ent torque is negligible in magnitude. In [6], equations
of rotational motion were solved using the multiple
scales approach and a limit process matching tech-
nique was implemented to allow the differential equa-
tions to be numerically integrated. The asymptotic so-
lution was used to determine the time required to bring
the spacecraft to a situation where there is only slight
wobbling which can be removed by adding a nuta-
tion damper. Recently, the Lyapunov–Krasovskii func-
tional [7, 8] and the inverse dynamics approach [9]
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were used for the stability analysis of spacecraft with
time delay in the measurement (i.e. [7, 8]) or in the
actuators (i.e. [9]).

The normal form of a nonlinear system is the sim-
plest possible form which yields the same qualita-
tive dynamics as does the original system [10]. Many
techniques such as the averaging method [11] and
the Lyapunov–Floquet transformation (for time peri-
odic equations) [12] have been used to obtain the nor-
mal forms for dynamical systems. However, two tech-
niques, namely center manifold reduction and multi-
ple scales method, are commonly used to obtain the
normal forms of systems of delayed differential equa-
tions (DDEs). Center manifold reduction [13–15] and
the multiple scales method [13, 16] are implemented
for DDEs in the vicinity of Hopf bifurcations, in par-
ticular, by eliminating the fast dynamics. A noticeable
advantage of the multiple scales method compared to
center manifold reduction is that the former can be ap-
plied directly to infinite dimensional DDEs, whereas
DDEs need to be converted into operator differential
equations in a Banach space in order for the center
manifold reduction technique to be applicable. It is
demonstrated in [13] that the two techniques result
in the same normal form of the bifurcation, although
the computations involved in the method of multiple
scales are significantly simpler.

In this study, the spin stabilization of a rigid space-
craft about an equilibrium state, which can be about
any of the principal axes of the spacecraft, is con-
sidered. However, we specifically concentrate on the
spin about the centroidal principal axis of intermediate
moment of inertia, i.e. the intermediate spin which is
generally unstable if no controller is used. The system
is supplied with a linear delayed feedback control for
stabilization purposes. The stability and bifurcation of
the system is studied and compared with results from
continuation software and numerical simulations. For
this purpose, the method of multiple time scales is em-
ployed to provide the normal form of the Hopf bifur-
cation. It is found that when a non-delayed feedback
controller is employed, a sufficiently large control gain
globally asymptotically stabilizes the system, whereas
when a delayed feedback controller is employed the
control gain must be within a finite range in order for
the system to be stable. Finally, simulations are pro-
vided to characterize the stable branches obtained by
the continuation software and a period-doubling route
to chaos is observed for time delays slightly more than
1 s.

2 Problem definition

The controlled angular velocity of a rigid spacecraft is
obtained by adding a linear delayed feedback control
to Euler’s equations of a rigid body, i.e.

Jω̇(t) = −ω×(t)Jω(t) + u(t), (1)

where J is the 3 × 3 body inertia matrix in principal
coordinates, ω(t) ∈ R

3 is the angular velocity in the
body frame, and u(t) ∈ R

3 is the control torque. We
aim to stabilize a desired nominal constant angular ve-
locity Ω ∈ R

3 about one of the principal axes using a
delayed feedback control of the form

u(t) = −κx(t − τ), (2)

where x(t) ∈ R
3 is the error in angular velocity of the

system when compared to the nominal angular veloc-
ity (x = ω − Ω), τ represents the time delay, and κ is
the scalar control gain. Note that (.)×: R3 → so(3) is
the skew-symmetric mapping given by

Ψ × =
⎡
⎣

0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0

⎤
⎦ , (3)

where the space of 3×3 real skew-symmetric matrices
is denoted by so(3), the Lie algebra of the Lie group
SO(3). Substituting Eq. (2) into Eq. (1) the closed-
loop dynamics of the rigid body with the delayed feed-
back control is obtained as

ẋ(t) = Lx(t) − κMx(t − τ) + R
(
x(t)

)

� F
(
x(t),x(t − τ), κ

)
, (4)

where

L = J−1[−Ω×J + (JΩ)×
]
,

M = J−1, R
(
x(t)

) = −J−1x×(t)Jx(t).

3 Linear stability analysis

3.1 Characteristic equation

We assume the nominal motion of the spacecraft is to
be uniformly spinning about one of its principal axes.
There are six equilibrium points, two for each princi-
pal axis, in the spin dynamics of a rigid body. If the
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nominal rotation is considered about the first principal
axis, i.e.

Ω = Ω1b1, (5)

where b1 is the direction of the first principal axis in
the body frame, then the matrix L takes the following
form:

L =
⎡
⎢⎣

0 0 0
0 0 J3−J1

J2
Ω1

0 J1−J2
J3

Ω1 0

⎤
⎥⎦ . (6)

To determine the type of bifurcation of the triv-
ial solution (0, κ), we linearize Eq. (4), and study
the roots of the characteristic equation |λI3 − L +
κe−λτ M| = 0, where I3 is the 3 × 3 identity matrix,
λ = σ + jγ , σ corresponds to the non-oscillatory part
of the solution, and γ is the frequency of oscillations.
This results in the first order (decoupled) and the sec-
ond order (coupled) equations

λ + 1

J1
κe−λτ = 0, (7a)

λ2 + kde−λτ λ + kpe−2λτ + α0 = 0, (7b)

where

kp = κ2

J2J3
, kd = κ

(
1

J2
+ 1

J3

)
,

α0 = (J1 − J3)(J1 − J2)

J2J3
Ω2

1 .

(8)

Setting λ = σ + jγ , we can write

σ 2 + 2jσγ − γ 2

+ kd(σ + jγ )
(
e−στ

)
(cosγ τ − j sinγ τ)

+ kp

(
e−2στ

)
(cos 2γ τ − j sin 2γ τ) + α0 = 0. (9)

The system becomes unstable when the eigenvalues
leave the left half complex plane at the critical value
κ = κc. The critical frequency γc corresponds to the
critical control gain κc at the stability boundary. We set
σ = 0 in Eq. (9) to locate the stability boundary. Then,
the complex-valued characteristic equation upon sep-
arating the real and imaginary parts can be obtained
as

Re : − γ 2 + kdγ sinγ τ + kp cos 2γ τ + α0 = 0,

(10a)

Im : γ = 2κ

J2 + J3
sinγ τ. (10b)

Hence, γc can be implicitly obtained via (see the
Appendix)

γ 2
c

[
1 − (J2 + J3)

2

J2J3

1

4 sin2 γcτ

]
= α0, (11)

or, it can be obtained in terms of κc as (see the
Appendix)

γ 2
c = 1

J2J3

[
κ2
c + Ω2

1 (J3 − J1)(J2 − J1)
]

= kpc + α0, (12)

where kpc denotes the critical value of kp at the stabil-
ity boundary.

To determine the type of bifurcation, dλ
dκ

is evalu-
ated at (λ, κ) = (iγc, κc), where the subscript c de-
notes the critical value, as

dλ

dκ
= −

{(
1

J2
+ 1

J3

)
λe−λτ + 2κ

J2J3
e−2λτ

}

×
{

2λ + κ

(
1

J2
+ 1

J3

)
e−λτ

− τλκ

(
1

J2
+ 1

J3

)
e−λτ

− 2τ
κ2

J2J3
e−2λτ

}−1

(13)

whose real part at the critical point is nonzero, i.e.

lim
κ→κc

Re

(
dλ

dκ

)
= lim

κ→κc

Num

Den
�= 0, (14)

where

Num

= 2κ2
c

[−(J2 + J3) cosγcτ + 2τκc

]

− (J2 + J3)γ
2
c

[
2J2J3 cosγcτ − (J2 + J3)κcτ

]

− 4γcκc

[−2J2J3 cosγcτ + (J2 + J3)τκc

]
sinγcτ

= 2κ2
c

[−(J2 + J3) cosγcτ + 2κcτ
]

= 2γ τ − sin 2γ τ

sinγ τ
κ2(J2 + J3) �= 0,

Den

= κ2
c

[
(J2 + J3)

2 − 4(J2 + J3)τκc cosγcτ + 4τ 2κ2
c

]
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Fig. 1 Bifurcation diagrams of the non-delayed feedback con-
trol for the inertia matrix J = diag[14,10,30] kg.m2 and nom-

inal spin rate Ω1 = 2 rad
s . The stable and unstable branches are

shown with solid and dashed lines, respectively

+ κ2
c

[
1 +

(
Ω1

κc

)2

(J3 − J1)(J2 − J1)

]

×
[
−2

(
J 2

2 + J 2
3

) + 4(J2 + J3)τκc cosγcτ

− (J2 + J3)
2

J2J3
τ 2κ2

c

]

= −κ2
c (J2 − J3)

2
(

1 + τ 2κ2
c

J2J3

)

+ Ω2
1 (J1 − J3)(J1 − J2)

[
−2

(
J 2

2 + J 2
3

)

+ 4(J2 + J3)τκc cosγcτ − (J2 + J3)
2

J2J3
τ 2κ2

c

]
.

(15)

Since the eigenvalues λ(κ) (λ as a function of κ)
are continuously differentiable with respect to κ near
to κc, and since Re( dλ

dκ
) �= 0, based on the Hopf bifur-

cation theory [17] the system exhibits the Hopf bifur-
cation. That is, the exchange of stability of the trivial
solution is hyperbolic (non-degenerate).

3.2 Non-delayed case

To study the stability of the non-delayed system, the
current state feedback is used, i.e. in Eq. (2) we set u =
−κx(t). The characteristic equation given in Eq. (7b)
simplifies to

λ2 + kdλ + kp + α0 = 0 (16)
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Fig. 2 Bifurcation diagrams of the non-delayed feedback con-
trol for the inertia matrix J = diag[20,10,30] kg.m2 and nom-

inal spin rate Ω1 = 2 rad
s . The stable and unstable branches are

shown with solid and dashed lines, respectively

whose solution can be expressed as λ = −C ±√
B − A where

A = α0, B = κ2(J2 − J3)
2

4(J2J3)2
=

(
kd

2

)2

− kp,

C = κ

2

(
J2 + J3

J2J3

)
= kd

2
.

(17)

Knowing that
√

B < C and that for both the minor
spin (J1 < J2, J3) and the major spin (J1 > J2, J3)
A is positive, we consider two cases: 0 < A < B or
A > B . Under the first condition we have

√
B − A <√

B < C, i.e. both roots of the characteristic equa-
tion (16) are real and negative. Under the second con-
dition Eq. (16) has two complex roots with negative
real parts. Thus, the major and minor spins are always
stable for any values of κ (specifically κ = 0 for the

uncontrolled system), while the stability of the inter-
mediate axis depends on the values of κ . Therefore, for
the linearized spin motion about either the major axis
(J1 > J2, J3) or the minor axis (J1 < J2, J3), a fre-
quency γ ∈R can always be found for any control gain
value, whereas for the motion about the intermediate
axis (J3 < J1 < J2), the existence of γ ∈ R depends
on the value of the control gain κ .

AUTO [18] is applied as the numerical continuation
software to Eq. (4) with τ = 0 to produce branches
of equilibria for varying κ . The equilibrium points are
displayed in the bifurcation diagrams given in Figs. 1–
3 which imply that the system encounters supercritical
pitchfork bifurcation. In Sect. 5, simulations are used
to determine the type of bifurcation. It can be seen
that there are no turning points between the bifurca-
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Fig. 3 Bifurcation diagrams of the non-delayed feedback con-
trol for the inertia matrix J = diag[20,10,30] kg.m2 and nomi-

nal spin rate Ω1 = 1.6 rad
s . The stable and unstable branches are

shown with solid and dashed lines, respectively

tion points and that nontrivial equilibrium points are
entirely stable.

3.3 Delayed case

The stability condition of Eq. (7a) which corresponds
to

ẋ(t) = ax(t − τ), (18)

where a = − κτ
J1

, can be obtained as

0 < κ <
πJ1

2τ
. (19)

Divergence and flutter instability boundaries are stud-
ied based on Eqs. (10a) and (10b). In order to obtain

the divergence boundary, we set γ = 0 which yields

kp = −α0. (20)

In order to obtain the flutter boundary, we set γ �= 0 in
Eqs. (10a) and (10b). Thus, in matrix form,

[
cos 2γ τ γ sinγ τ

− sin 2γ τ γ cosγ τ

][
kp

kd

]
=

[
γ 2 − α0

0

]
. (21)

From Eq. (21), the coefficients kd and kp can be ob-
tained as

kp = γ 2 − α0, (22a)

kd = 2 sinγ τ

γ

(
γ 2 − α0

)
. (22b)
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Fig. 4 Stability chart in the kp − kd parameter plane indi-
cating the number of unstable characteristic exponents with
α0 = −0.8533 and τ = 1 s. This figure corresponds to the sec-
ond order coupled characteristic equation (7b). The stable and
unstable regions are labeled by S and U, respectively

Fig. 5 Stability regions are shadowed for the inertia matrix
J = diag[10,10,30] kg.m2, nominal spin rate Ω1 = 2 rad

s , and
τ = 1 s

Following [19], taking the partial derivative of Eq. (9)
with respect to kp and recalling Eqs. (22a) and (22b)
when γ = 0, we can obtain

∂σ

∂kp

= − 1

kd + 2α0τ
. (23)

If kd > −2α0τ then ∂σ
∂kp

< 0, and if kd < −2α0τ

then ∂σ
∂kp

> 0. Therefore, if the line kp = −α0 is
crossed from left to right and kd > −2α0τ , then a real

Fig. 6 Stability regions are shadowed for the inertia matrix
J = diag[14,10,30] kg.m2, nominal spin rate Ω1 = 2 rad

s , and
τ = 1 s

Fig. 7 Stability regions are shadowed for the inertia matrix
J = diag[19,10,30] kg.m2, nominal spin rate Ω1 = 2 rad

s , and
τ = 1 s

characteristic exponent becomes stable. Whereas, if
the line kp = −α0 is crossed from left to right and
kd < −2α0τ , then a real characteristic exponent be-
comes unstable. On the other hand, from Eq. (7b), it
is clear that for α0 < 0, there is an unstable real eigen-
value if kd = kp = 0. Hence, the origin in the kp − kd

parameter plane has one real positive characteris-
tic exponent. Based on this fact, and by considering
the exponent-crossing directions along kp = −α0 the
number of unstable eigenvalues can be obtained. The
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Fig. 8 Stability regions are shadowed for the inertia matrix
J = diag[20,10,30] kg.m2, nominal spin rate Ω1 = 2 rad

s , and
τ = 1 s

Fig. 9 Stability regions are shadowed for the inertia matrix
J = diag[20,10,30] kg.m2, nominal spin rate Ω1 = 1.6 rad

s , and
τ = 1 s

result for the inertia matrix J = diag[14,10,30] kg.m2

and the nominal spin rate Ω1 = 2 rad
s is shown in

Fig. 4, where the thick black curve is associated with
the flutter instability boundary and the vertical line
kp = −α0 corresponds to the divergence instability
boundary. The numbers of unstable characteristic ex-
ponents are mentioned inside circles for different re-
gions in Fig. 4. Solving Eq. (22a) for γ and substi-
tuting it into Eq. (22b), the explicit relation between
kp and kd can be obtained. According to Fig. 4, after
writing kd in terms of kp using Eqs. (22a) and (22b),

Fig. 10 Stability regions are shadowed for the inertia matrix,
J = diag[20,10,30] kg.m2, nominal spin rate Ω1 = 0.5 rad

s , and
τ = 1 s

Fig. 11 Stability regions are shadowed for the inertia matrix,
J = diag[25,10,30] kg.m2, nominal spin rate Ω1 = 2 rad

s , and
τ = 1 s

it can be shown that the stable regions corresponding
to Eq. (7b) in the (kp − kd) parameter plane can be
described by

kp > −α0, kd >
2 sin(τ

√
kp + α0)√

kp + α0
kp. (24)

Now, we use Eq. (8) to write kp , kd , and α0 in terms of
the system moments of inertia and the control gain κ .
The delay independent stability condition of system
with delayed feedback control given in Eq. (1) can be
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Fig. 12 Eigenvalues real part for different values of κc for the
inertia matrix J = diag[14,10,30] kg.m2, nominal spin rate
Ω1 = 2 rad

s , and τ = 0.01 s

Fig. 13 Eigenvalues real part for different values of κc for the
inertia matrix J = diag[20,10,30] kg.m2, nominal spin rate
Ω1 = 2 rad

s , and τ = 0.01 s

obtained from Eq. (24) as

Si = {κ | κ >
√−α0J2J3 or κ < −√−α0J2J3}. (25)

Also, according to Eqs. (19) and (24), the delay depen-
dent stability condition can be obtained as

Sd =
{
κ | f (κ, τ ) < 0 and 0 < κ <

πJ1

2τ

}
, (26)

Fig. 14 Eigenvalues real part for different values of κc for the
inertia matrix J = diag[14,10,30] kg.m2, nominal spin rate
Ω1 = 2 rad

s , and τ = 1 s

Fig. 15 Eigenvalues real part for different values of κc for the
inertia matrix J = diag[20,10,30] kg.m2, nominal spin rate
Ω1 = 2 rad

s , and τ = 1 s

where

f (κ, τ ) = 2κ
sin(τ

√
κ2

J2J3
+ α0)√

κ2

J2J3
+ α0

− (J2 + J3). (27)

Note that, according to Eq. (8), κ2

J2J3
in Eq. (27) is the

same as kp .
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4 Normal form of Hopf bifurcation

To obtain the normal form of the Hopf bifurcation, we
define the detuning parameter δ as

κ = κc + ε2δ, (28)

which quantifies the closeness of the feedback control
gain κ to its critical value κc . Then, we let

x(t; ε) = εx1(T0, T2) + ε2x2(T0, T2)

+ ε3x3(T0, T2) + · · · , (29)

where T0 = t , T2 = ε2t , and ε is the bookkeeping pa-
rameter. The solution does not depend on T1 since sec-
ular terms that cause resonance first appear at O(ε3).
The time derivative with respect to t can then be ex-
pressed as

d

dt
= ∂

∂T0
+ ε2 ∂

∂T2
+ · · · = D0 + ε2D2 + · · · . (30)

The Taylor series expansion is utilized for small ε to
express the delayed term x(t − τ) as

x(t − τ ; ε)
= εx1

(
T0 − τ, T2 − ε2τ

) + ε2x2
(
T0 − τ, T2 − ε2τ

)

+ ε3x3
(
T0 − τ, T2 − ε2τ

) + · · ·
= εx1τ + ε2x2τ + ε3(−τD2x1τ + x3τ ) + · · · ,

where xτ denotes x(T0 − τ, T2).
Substituting Eqs. (28)–(30) into Eq. (4), and equat-

ing coefficients of like powers of ε, three sets of equa-
tions can be obtained as

Lx1 = 0, (31a)

Lx2 = −J−1x×
1 Jx1, (31b)

Lx3 = −D2x1 + κcτMD2x1τ − δMx1τ

− J−1(x×
1 Jx2 + x×

2 Jx1
)
, (31c)

where x denotes x(T0, T2), and the operator L is de-
fined such that Lxi = D0xi − Lxi + κcMxiτ . The gen-
eral solution for (31a) can be expressed as

x1 = A(T2)φeiγcT0 + cc, (32)

where cc denotes the complex conjugate of the pre-
ceding terms, and φ is the eigenvector corresponding

to the eigenvalue iγc which is a constant vector of the
form

φ =
⎡
⎣

α

1
φ3

⎤
⎦ , φ3 = jγcJ2 + κce

−jγcτ

(J3 − J1)Ω1
, (33)

where α can be any complex value, and γc can be
obtained from Eq. (11). Substituting Eq. (32) into
Eq. (31b) and seeking for the particular solution for
x2 yields

x2 = Γ 1A
2e2iγcT0 + Γ 2AĀ + cc, (34)

where (.̄) denotes the complex conjugate, and

Γ 1 = (−2iγcI3 + L − κcMe−2iγcτ
)−1J−1φ×Jφ,

Γ 2 = (L − κcM)−1J−1φ×Jφ̄.
(35)

Substituting Eqs. (32) and (34) into Eq. (31c) yields

Lx3 = (−I3 + κcτMe−iγcτ
)
φD2AeiγcT0

− δMφe−iγcτAeiγcT0

− J−1[φ×J(Γ 2 + Γ̄ 2) + φ̄
×

JΓ 1 + Γ ×
1Jφ̄

+ (
Γ ×

2 + Γ̄
×
2

)
Jφ

]
A2ĀeiγcT0 + cc

+ NST, (36)

where NST represents the terms that do not produce
secular terms.

For the set of Eqs. (31a), (31b) and (31c) to have a
solution it is necessary and sufficient that the solvabil-
ity conditions are satisfied. Following a similar pro-
cedure as in [13], to eliminate the secular terms in
Eq. (34), a particular solution of x3 is sought of the
form x3 = Θ(T1, T2)e

iγcT0 which, after substituting in
Eq. (34), yields
(−iγcI3 + L − κce

−iγcτ M
)
Θ

= (
I3 − κcτMe−iγcτ

)
φD2A + δMφe−iγcτA

+ J−1[φ×J(Γ 2 + Γ̄ 2) + φ̄
×

JΓ 1 + Γ ×
1 Jφ̄

+ (
Γ ×

2 + Γ̄
×
2

)
Jφ

]
A2Ā. (37)

The solvability condition of the algebraic equation
given in (37) requires that the right hand side of
Eq. (37) be orthogonal to every solution of the adjoint
(conjugate transpose) homogeneous problem
(
iγcI3 + L∗ − κce

iγcτ M∗)h = 0, (38)
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where (.)∗ denotes the conjugate transpose, and, since
L and M are real matrices, L∗ = L and M∗ = M. Note
that the same is true for J, i.e. J∗ = J. We refer the
reader to [10, 20, 21] for more details on solvabil-
ity conditions. To achieve a unique solution for h in
Eq. (38), h is normalized as h∗.φ = 1, and the com-
plex value α is set to α = φ3 in Eq. (33) for more con-
venience. Then, the solution of h can be obtained as
h = [−ᾱ,1, ᾱ]T , where ᾱ denotes the complex con-
jugate of α. According to the orthogonality described
above, if we set the inner product of h and the right
hand side of Eq. (37) to zero and solve for D2A, the
resulting complex-valued form of the normal form of
the bifurcation can be obtained as

D2A = δΛ1A + Λ2A
2Ā, (39)

where

Λ1 = − {
αᾱJ2(J1 − J3) + J1J3

}{
J1J2J3

− e−iγcτ τκc

[
αᾱJ2(J1 − J3) + J1J3

]}−1
e−iγcτ ,

Λ2 = −
{
ᾱJ2J3(J3 − J2)

(
χ11

Ξ11
+ χ12

Ξ12

)

+ ᾱJ3J1(J1 − J3)

×
(

χ21

κc

+ χ22

Ξ22
+ χ23

Ξ23
+ χ24

Ξ24

)

+ ᾱJ1J2(J2 − J1)

×
(

χ31

κc

+ χ32

Ξ32
+ χ33

Ξ33
+ χ34

Ξ34

)}

× {
J1J2J3 − e−iγcτ τκc

× [
αᾱJ2(J1 − J3) + J1J3

]}−1
,

(40)

where

χ11 = −α(3ᾱ + α)(J2 − J1)(J1 − J3)Ω1

+ [
(α + ᾱ)(J2 − J1) + 2α2ᾱ(J1 − J3)

]
κc,

Ξ11 = −(J2 − J1)(J1 − J3)Ω
2
1 + κ2

c ,

χ12 = e2iγcτ α
{−e2iγcτ (J2 − J1)(J1 − J3)(α + ᾱ)Ω1

+ 2ie2iγcτ
[
J2(J2 − J1) + αᾱJ3(J1 − J3)

]
γc

+ [
(J2 − J1) + αᾱ(J1 − J3)

]
κc

}
,

Ξ12 = −e4iγcτ (J2 − J1)(J1 − J3)Ω
2
1 − 4e4iγcτ J2J3γ

2
c

+ 2ie2iγcτ (J2 + J3)γcκc + κ2
c ,

χ21 = χ31 = −(α + ᾱ)(J3 − J2),

χ22 = − ᾱ

α
χ32 = ᾱ(J3 − J2),

Ξ22 = Ξ32 = 2iJ1γc + e−2iγcτ κc,

χ23 = (J2 − J1)
[
2αᾱ(J1 − J3)Ω1 − (α + ᾱ)κc

]
,

Ξ23 = Ξ33 = (J1 − J2)(J1 − J3)Ω
2
1 + κ2

c ,

χ24 = ᾱe2iγcτ (J2 − J1)

× [
αe2iγcτ (J1 − J3)Ω1 − 2ie2iγcτ J2γc − κc

]
,

Ξ24 = Ξ34 = −e4iγcτ (J2 − J1)(J1 − J3)Ω
2
1

− 4e4iγcτ J2J3γ
2
c

+ 2ie2iγcτ (J2 + J3)γcκc + κ2
c ,

χ32 = −α(J3 − J2),

χ33 = α(J1 − J3)
[
(α + ᾱ)(J2 − J1)Ω1 − 2αᾱκc

]
,

χ34 = αᾱe2iγcτ (J1 − J3)

× [
e2iγcτ (J2 − J1)Ω1 − 2iαe2iγcτ J3γc − ακc

]
.

(41)

Note, again, that γc can be obtained from Eq. (11) and
the relation between κc and γc is given in Eq. (12). The
Hopf bifurcation is supercritical if Re(Λ2) < 0, and it
is subcritical if Re(Λ2) > 0.

5 Results and discussion

First, to obtain the stability conditions for the spin
about the b̂1 axis which corresponds to the inter-
mediate spin with the delayed feedback control in
Eq. (2) for τ = 1 s, we select J2 and J3 to be J2 =
10 kg.m2 and J3 = 30 kg.m2. Then, we either fix Ω

and change J1, or vice versa. This way, the stability
chart can be expressed in a one-dimensional format
where κ varies along the horizontal axis as in [22].
Note that α0 < 0 corresponds to the intermediate spin
which is unstable without controller. The stability con-
ditions given in Eqs. (19), (25), and (26) are visual-
ized in Figs. 5–11 for τ = 1 s and different values of J
and Ω1. The vertical blue and red lines in the figures
correspond to κ = πJ1

2τ
and κ = √−α0J2J3, respec-

tively [Eqs. (19) and (25)], whereas the black curve
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Fig. 16 Bifurcations in the J1 −κc parameter plane for the mo-
ments of inertia J2 = 10 kg.m2, J3 = 30 kg.m2, nominal spin
rate Ω1 = 2 rad

s , and τ = 1 s

represents f in Eq. (26). The shaded areas in the fig-
ures represent the stable regions where Eqs. (19), (25),
and (26) are simultaneously satisfied. Permitted val-
ues of the control gain κ contain those which lie be-
tween the blue and red lines, and, at the same time,
those for which the value of f calculated in Eq. (26)
is non-positive. One can observe that for a fixed Ω1,
the stability area becomes narrower as J1 increases
to 20 kg.m2, and that as J1 becomes greater than
20 kg.m2, two stable regions start to appear. In Fig. 8,
for instance, it can be seen that for Ω1 = 2 rad

s and
J1 = 20 kg.m2, the system is stable only if κ = 20.
It can also be seen that as the nominal spin rate Ω1

increases from 0 to 2 rad
s for the fixed value of J1 =

20 kg.m2, the range of the control gain κ that stabi-
lizes the system becomes narrower.

Fig. 17 Time series for the inertia matrix J = diag([14,10,30]) kg.m2, control gain κ = 10, nominal spin rate Ω1 = 2 rad
s , and

τ = 0.01 s
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Fig. 18 The nontrivial equilibrium solution is stable node
for the system with non-delayed feedback control (top left),
stable spiral for τ = 0.8 s (top right), and stable limit
cycle for τ = 1 s (bottom left). The second limit cy-
cle (bottom right) can be achieved by starting from x0 =

[0.01,0.01,−0.01]T , while for the rest of the simulations, x0 =
[−0.01,0.01,0.01]T . The results are shown for the inertia ma-

trix J = diag([14,10,30]) kg.m2, control gain κ = 10, and nom-

inal spin rate Ω1 = 2 rad
s

Next, we utilize DDE-BIFTOOL [23, 24] to obtain
the (infinite number of) eigenvalues of the delayed sys-
tem (4) as the control parameter κ changes. The real
part of the eigenvalue λ of the system (4) is plotted
versus the control parameter κ in Figs. 12 and 13 for
τ = 0.01 s, and in Figs. 14 and 15 for τ = 1 s. Note
that by assuming τ = 0.01 s in the simulations, the
system is considered to be almost non-delayed.

One can observe that the stability of the trivial
solution based on the negativeness of the real part
of the eigenvalues for the almost non-delayed case
(τ = 0.01 s) in Figs. 12 and 13 agrees with the bi-
furcation diagrams given in Figs. 1 and 2 obtained
for the corresponding non-delayed system where the

trivial solution becomes stable and remains so after κ

reaches a specific value. Whereas, when the time de-
lay is added, the trivial solution becomes stable for the
respective value of κ , but loses stability after κ con-
tinues to grow. When κ < 0, the system exhibits un-
bounded motion as is expected from the bifurcation
charts shown in Figs. 1–3 because there is no equilib-
rium solution other than the trivial solution which is a
repellor. The stability regions defined by the negative-
ness of the real part of the eigenvalues of the delayed
system with τ = 1 s shown in Figs. 14 and 15 agree,
respectively, with those obtained in Figs. 6 and 8 us-
ing the strategy given in Sect. 3.3. Figure 16 shows
the bifurcation diagram in the J1 − κc parameter plane



www.manaraa.com

814 M. Nazari, E.A. Butcher

Fig. 19 The trivial solution is a stable node for the non-delayed system (left), and a stable spiral for τ = 1 s (right). The results are
shown for the inertia matrix J = diag([14,10,30]) kg.m2, control gain κ = 20, and nominal spin rate Ω1 = 2 rad

s

Fig. 20 Period-2 motion at τ = 1.1 s for the inertia matrix J = diag([14,10,30]) kg.m2, control gain κ = 10, and nominal spin rate
Ω1 = 2 rad

s

where it can be seen that a bifurcation of co-dimension
2 happens at (κc, J1) = (20,20). Note that the stable
node(s) obtained by the bifurcation charts shown in
Fig. 1 at κ = 10 agree with the simulated results shown
in Fig. 17. Note that the initial conditions are assumed
to be x0 = [−0.01,0.01,0.01]T for the simulated re-
sults shown, unless mentioned otherwise.

Furthermore, the simulated results in Fig. 18 pro-
duced for J = [14,10,30] kg.m2, Ω1 = 2 rad

s , and dif-
ferent time delays of τ = 0, τ = 0.8 s, and τ = 1 s indi-
cate that the other equilibrium solution which is stable
node for the system with non-delayed feedback con-

trol becomes stable spiral as the time delay increases
from 0 to 0.8 s, and it becomes stable limit cycle as
the time delay increases from 0.8 s to 1 s. This can
be verified by the fact that for J = [14,10,30] kg.m2

and Ω1 = 2 rad
s , Eq. (11) has a root for γc only if

τ ≥ 0.925 s. On the other hand, according to Figs. 1
and 19, the trivial solution is stable node for J1 =
14 kg.m2 and κ = 20 for the non-delayed system,
while it becomes a stable spiral for the same value of
κ and τ = 1 s. Therefore, the bifurcation type changes
from supercritical pitchfork bifurcation to supercriti-
cal Hopf as the time delay is added to the system. Note
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Fig. 21 Period-8 motion at τ = 1.1095 s for the inertia matrix J = diag([14,10,30]) kg.m2, control gain κ = 10, and nominal spin
rate Ω1 = 2 rad

s

Fig. 22 The strange attractor of the chaotic response at τ =
1.15 s is shown in left. The sensitivity to initial condi-
tions is shown in right where the initial conditions are x0 =
[0.01,0.01,0.01]T (solid) and x0 = [0.0101,0.0101,0.0101]T

(dashed). The results are shown for the inertia matrix J =
diag([14,10,30]) kg.m2, control gain κ = 10, and nominal spin

rate Ω1 = 2 rad
s

that according to Fig. 1, for κ = 10 there are two equi-
librium solutions to which the trajectories may travel
depending on the chosen initial conditions. For in-
stance, when τ = 1 s there are two stable limit cycles
which are shown in Fig. 18.

As can be understood, the system is periodic for
τ = 1 s. Let κ be fixed at κ = 10. According to the
simulations, when the time delay becomes slightly
greater than τ = 1 s the system exhibits period-
doubling bifurcation, and becomes chaotic via this
phenomenon. The sequential period-doubling occurs

at τ = 1.1 s (period-2), τ = 1.105 s (period-4), τ =
1.1095 s (period 8), and τ = 1.1104 s (period 16). One
can see that the sequential bifurcation points given
above are consistent with the Feigenbaum universal
constant. The 2- and 8-periodic responses are shown
in Figs. 20 and 21, respectively. The chaotic attrac-
tor for τ = 1.15 s is shown Fig. 22, where the chaotic
motion is verified via the sensitivity of the response
to the initial conditions. Note that the trajectories in
Fig. 22-left are shown for the last 10 % of the elapsed
time.
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6 Conclusion

In this study, a linear delayed feedback control law
was introduced to stabilize the relative angular mo-
tion of spacecraft about an equilibrium state, which
can be the spin about any of the principal axes of the
spacecraft, regardless of the external torques. Since the
spin about the centroidal principal axis of intermedi-
ate moment of inertia is generally unstable if no con-
troller is used, the specific concentration was on the
intermediate spin. The stability conditions obtained
via delay dependent and delay independent stability
analysis were verified by means of continuation soft-
ware. AUTO continuation software was applied to the
non-delayed closed-loop system to produce branches
of equilibria for varying control gain, while DDE-
BIFTOOL continuation software was used to obtain
the (infinite number of) eigenvalues of the delayed
closed-loop system. Furthermore, the method of mul-
tiple time scales was employed to provide the normal
form of the Hopf bifurcation. The stability and bifur-
cation of the system was studied and compared with
the simulation results. The results indicate that while
a sufficiently large control gain can satisfy (global
asymptotic) stability of the non-delayed closed-loop
system, stability of the delayed closed-loop system re-
quires accurate selection of the control gain. As the
critical case, if the intermediate moment of inertia
equals the average of the two other moments of iner-
tia, then there is only one value for the control gain for
which the intermediate spin stability can be attained
for the system with a non-negligible delay. Finally, the
period-doubling route to chaos was observed via in-
creasing the time delay from a certain amount. As a
future work, bifurcation analysis of delayed spin sta-
bilization of a dual-spin spacecraft can be considered
where two subsystems have relative spin motion with
respect to each other.
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Appendix

Critical frequency of the characteristic equation in
Sect. 3.1

Substituting for kp from Eq. (8) into Eq. (10a) on
the stability boundary, the term κ2

c cos 2γcτ appears

which, using trigonometric identities, can be ex-
pressed as

κ2
c cos 2γcτ = κ2

c

(
1 − 2 sin2 γcτ

)

= κ2
c − 2(κc sinγcτ)2. (A.1)

Solving Eq. (10b) for κc gives

κc = J2 + J3

2

γc

sinγcτ
. (A.2)

Substituting Eq. (A.2) into Eq. (A.1), one can obtain

κ2
c cos 2γcτ = (J2 + J3)

2

4

γ 2
c

sin2 γcτ
− 2

(J2 + J3)
2

4
γ 2
c

= (J2 + J3)
2

4
γ 2
c

(
1

sin2 γcτ
− 2

)
. (A.3)

Substituting Eqs. (A.2) and (A.3) into Eq. (10a), it be-
comes

− γ 2
c + γ 2

c

(
J2 + J3

J2J3

)
J2 + J3

2

+ (J2 + J3)
2

4J2J3
γ 2
c

(
1

sin2 γcτ
− 2

)

= (J3 − J1)

(J1 − J2)
J2J3Ω

2
1 , (A.4)

where Eq. (8) is used to substitute for α, kp , and kd

in terms of κ and the parameters of the system. There-
fore, the critical frequency corresponding to κc can be
obtained via

γc = Ω1

√√√√ (J3 − J1)(J1 − J2)

−1 + 1
2 (J2 + J3)2[1 + 1

2 ( 1
sin2 γcτ

− 2)]

= Ω1

√√√√ (J1 − J3)(J1 − J2)

1 − (J2+J3)
2

4 sin2 γcτ

, (A.5)

or, after using Eq. (A.2), the critical frequency can be
expressed in terms of κc as

γ 2
c = 1

J2J3

[
κ2
c + Ω2

1 (J3 − J1)(J2 − J1)
]
. (A.6)
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